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Abstract

In this paper the inverse structural modification problem is solved in order to determine the dimensions
of the cross-section of a beam that when added to an original structure will assign natural frequencies or
antiresonances as specified. In order for this to be accomplished rotational receptances must be measured as
presented in the companion paper. When the modification is cast as an additional forcing term on the
original structure a system of multivariate polynomials in the parameters of the beam cross-section are
revealed. The solution of this system yields the beam parameters that assign the specified vibration
behaviour.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Structural modification is about the effect of mass, stiffness and damping changes on the
dynamic behaviour of mechanical systems. The direct structural modification problem is
concerned with determining the changes in eigenvalues and eigenvectors brought about by a
designated physical modification. Conversely, the inverse structural modification problem occurs
when changes in mass, stiffness and damping are sought in order that the modified system shall
possess certain desirable dynamic characteristics usually in the form of natural frequencies, mode
shapes or antiresonances.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The Rayleigh quotient may be thought of as the first seed of direct dynamic modification,
though according to Temple and Bickley [1] the stationary property of the Rayleigh quotient was
known to Lagrange. Rayleigh showed that the smallest natural frequency is the global minimum
and the largest natural frequency the global maximum of the quotient. A consequence of this
minimal property is that any stiffness increase or mass decrease will generally result in an increase
the system natural frequencies, except when a mass or stiffness is added at a vibration node when
there is no change in that particular natural frequency. This result may of course be found in
Rayleigh’s famous treatise ‘‘The Theory of Sound’’ [2].

Wittrick [3] concluded that any small change to an eigenvalue should be attributed to small
parameter changes only and not to any small changes to the modes shape, because of the
stationarity of the Rayleigh quotient. Fox and Kapoor [4] showed that expressions of both
eigenvalue and eigenvector rate of change may be written in terms of only the corresponding
unmodified eigenvector and eigenvalue. The importance of knowing the rates of change of
eigenvectors and eigenvalues with respect to structural changes is that they can be used to obtain a
first-order approximation of the actual modified eigenvalues and eigenvectors. Structural
modification techniques based on the Rayleigh Quotient, and in general on techniques that rely
on the estimation of rates of change of eigenvalues and eigenvectors with respect to structural
parameters, are suitable only for infinitesimal modifications.

Weissenberg [5,6] treated lumped mass and stiffness modifications as a symmetric unit rank
perturbation on the eigenvalue problem of the unmodified structure. For example, for a point
mass modification this perturbation is given by

ðK� ō2
iM� ō2

i dmuuTÞj̄i ¼ 0, (1)

where dm is the mass modification and u a unit vector that indicates the position of the structural
modification. He obtained the expressions

1

dm
¼

Xn

j¼1

o2Z2
j

o2
j � o2

, (2)

zji ¼ bi

Zj

o2
j � ō2

i

, (3)

where oj and ōi are, respectively, the jth natural frequency of the original system and the ith
natural frequency of the modified system. The latter is one of several frequencies o ¼ ōi that
satisfies Eq. (2). zji the jth component of zi ¼MUTj̄i where U is the modal matrix having the
eigenvectors of the original system in its columns. M is the mass matrix and j̄i is the ith
eigenvector of the modified system. Zj is the jth component of the vector Z ¼ Uu and bi is a scaling
constant. Pomazal and Snyder [7] extended this methodology to the case of damped structures.

One may see a duality between the direct and inverse modification problem from Eq. (2). In the
direct problem, the designated modification dm is obviously independent of frequency o whereas
the right-hand side of Eq. (2) is a function of o; say gðoÞ: Therefore from a plot of gðoÞ versus o
and for a given dm the modified natural frequencies may be read directly from the intersections of
the horizontal straight line 1=dm with gðoÞ: In the case of inverse problem, by setting a target
natural frequency ōi; the value at the intersection of the vertical line ōi and gðoÞ is the desired
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1=dm: In the case of non-intersection in the range of practically feasible modifications it must be
concluded that the assignment of the desired natural frequency ōi cannot be achieved.

Ram and Braun [8] considered the problem of assigning mode shapes. The modified
eigenvectors were constrained to the linear span of the measured original ones. Bucher and Braun
[9] used left eigenvectors to prove that under certain conditions on the modification values dm and
dk the modified modal vectors can be expressed as the superposition of the unmodified modal
vectors. Mottershead et al. [10] assigned the nodes of the mode shapes.

Antiresonances, or zeros, are as important as the resonances since they are the frequencies at
different steady-state response locations at which the vibration disappears to zero, or to low levels
when damping is present. It is therefore useful to be able to extend the methodologies of structural
modification to the case of assigning antiresonances at certain locations as well be able to
determine the effect of structural changes on the zeros. Mottershead [11] demonstrated that the
sensitivities of the zeros are a linear superposition of the sensitivities of eigenvalues and
eigenvectors. Mottershead and Lallement [12] used this knowledge together with the theory of
unit rank modification [5,6] to assign natural frequencies and antiresonances at the same values
and thereby create vibration nodes. Mathematically, the anti-resonance frequencies are the
eigenvalues of the adjoint system; the system obtained by deleting a row and a column from the
original dynamic stiffness matrix. Mottershead [13] applied force constraints at the modification
coordinates in order to derive the frequency response function matrix of the adjoint system from
the original frequency response matrix. He then used the adjoint frequency response function
matrix to assign zeros at predetermined frequency values.

This paper treats the inverse problem of modifying an original structure by adding a beam to it.
Such a modification yields couplings at more than a single coordinate and as a consequence the
modification equations take the form of multivariate polynomials. An extra difficulty arises
because the introduction of a beam requires that rotational receptances are measured at the
modification coordinates, the subject matter of the companion paper [14].
2. Modification theory

The effect of structural modifications on the system receptances may be determined when the
receptances of the original system at the modification coordinates are measured. The theory is well
developed and involves compatibility conditions on forces and displacements at the modification
coordinates as explained for example in Refs. [15–17]. These methodologies are intuitively
appealing since they involve the application of mechanical vibration principles similar to electrical
engineering network concepts, but are cumbersome to compute and cast in a simple form for
fairly large structures. However, by treating the modification as a forcing term on the unmodified
structure, as for example in Refs. [18,19], a succinct formulation amenable to direct
implementation is obtained.

Assume that the dynamic stiffness of the original structure is given by BðoÞ to be modified by
structural components of dynamic stiffness DBðoÞ: This modification can be viewed as a
perturbation BðoÞ þ DBðoÞ on BðoÞ by DBðoÞ: The frequency domain equation of the combined
system can now be written as

ðBðoÞ þ DBðoÞÞxðoÞ ¼ fðoÞ, (4)
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where xðoÞ is the displacement response vector due to the externally applied force vector fðoÞ:
Rearranging Eq. (4) is such a way as to treat DBðoÞxðoÞ as an extra forcing on the unmodified
structure the following equation is obtained:

BðoÞxðoÞ ¼ fðoÞ � DBðoÞxðoÞ. (5)

Since the inverse of BðoÞ is the unmodified receptance matrix HðoÞ; Eq. (5) can be rearranged in
the form

xðoÞ ¼ ðIþHðoÞDBðoÞÞ�1HðoÞfðoÞ, (6)

where I is the unit matrix. The term ðIþHðoÞDBðoÞÞ�1HðoÞ is the matrix of modified receptances.
The matrix Eq. (6) may now be used to assign natural frequencies and antiresonances. The

vanishing of detðIþHðoÞDBðoÞÞ occurs at the newly created resonant frequencies and when the
pqth term of the matrix product adjðIþHðoÞDBðoÞÞHðoÞ vanishes an anti-resonance of the pqth
receptance of the modified system is defined. Further discussion is presented in the following
subsections. In the companion paper [14] Eq. (5) is manipulated in a different way to obtain the
original receptance matrix HðoÞ that includes the sought after rotational receptances.
3. The experimental set-up and model of the added beam

The experimental arrangement is shown schematically in Fig. 1 and a more detailed technical
drawing can be found in the companion paper [14]. The coordinate system used in the analysis
and the important dimensions are shown. The unmodified structure, indicated by the full lines, is
the portal frame with the leg on the right-hand side missing. The beam used to modify the original
structure is the missing leg shown in dashed outline in Fig. 1. The height of the structure denoted
by L1 is 1m and the overspan, L2; is 0.5m. The breadth, b, depth, d, and thickness, t, of the cross-
sections are the same for all the beams and are 0.1, 0.05 and 0.004m, respectively. In order to
utilise the modification theory presented in Section 2 a model of the dynamic stiffness DBðoÞ of
L2 

L1 

d

b

t
x

zθ

y

x

z

yθ

Fig. 1. Schematic diagram of the experimental rig.
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the modification is required along with the measured receptance matrix HðoÞ at the connection
point (the right-hand top corner) on the unmodified frame. In the analysis that follows only the
equations in the xy-plane are given. The corresponding equations for the other two planes are of
similar form and straightforward to derive.

The added beam is modelled by a single Euler–Bernoulli beam. After applying constraints at
the built-in end its dynamic stiffness may be represented by

DBðoÞ ¼

� 1
3
o2rAL1 þ

EA
L1

0 0

0 � 13
35

o2rAL1 þ 12 EIzz

L3
1

� 11
210

o2rAL1 þ 6 EIzz

L2
1

0 � 11
210

o2rAL1 þ 6 EIzz

L2
1

� 1
105

o2rAL1 þ 4 EIzz

L1

0
BBB@

1
CCCA, (7)

where A is the area, given by A ¼ bd � ðb � 2tÞðd � 2tÞ; Izz the second moment of area about the
z-axis, given by Izz ¼ bd3=12� ½ðb � 2tÞðd � 2tÞ3=12�; E the Youngs’ modulus and r the density
which are taken to be 210� 109 N=m2 and 7850kg=m3; respectively, throughout.

With reference to the coordinates shown in Fig. 1 the unmodified frequency response matrix
HðoÞ can be written as

HðoÞ ¼

hxx hxy hxyz

hyx hyy hyyz

hyzx hyzy hyzyz

0
B@

1
CA, (8)

where hpqðoÞ is the steady-state displacement response at coordinate p due to the application of a
unit sinusoidal force of frequency o at coordinate q

When the expressions for A and Izz and Eqs. (7) and (8) are substituted into

detðIþHðoÞDBðoÞÞ ¼ 0, (9)

the result is a multivariate polynomial in b, d, t and o: The determinant is a function of the
frequency response functions hpq which in turn are functions of the angular frequency o: The
frequencies at which this polynomial becomes zero are the natural frequencies of the system
modified by the added beam.

As described in Section 2 an antiresonance is assigned when a term of the matrix

adjðIþHðoÞDBðoÞÞHðoÞ (10)

becomes vanishingly small. For example, the polynomial that assigns an antiresonance to h̄yy;
where the overbar denotes the modified system, is given by

Aðhyx þ hyxhyzyCþ hyxhyzyz
D� hyzxhyyC� hyzxhyyz

DÞhxy

þ ð1þ hyzyCþ hyzyz
Dþ hxxAþ hxxAhyzyC

þ hxxAhyzyz
D� hyzxAhxyC� hyzxAhxyz

DÞhyy

þ ð�hyyC� hyyz
D� hxxAhyyC� hxxAhyyz

D

þ hyxAhxyCþ hyxAhxyz
DÞhyzy ¼ 0, ð11Þ

where A ¼ �1
3
o2rAL1 þ EA=L1; B ¼ �13

35
o2rAL1 þ 12EIzz=L3

1; C ¼ � 11
210

o2rAL1 þ 6EIzz=L2
1

and D ¼ � 1
105o

2rAL1 þ 4EIzz=L1:
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4. Experimental procedure

The added right-hand leg of the portal frame was manufactured and receptances were acquired
from experiments carried out with and without the added leg in place. The natural frequencies and
antiresonances from the complete portal frame were then used as target values to be assigned
using receptance data from the structure without the right-hand side leg. Application of the
method described above was expected to result in the known dimensions of the added beam cross-
section.

Fig. 2 shows the moduli of the translational receptances of the original system measured at the
connection point, whereas Fig. 3 gives the moduli of the original-system rotational receptances
obtained by using techniques described in the companion paper [14]. The natural frequencies of
the original system, read from Fig. 2, are listed in Table 1 with the corresponding mode shapes
depicted in Fig. 4. The first and third modes are entirely in the x � y plane and the second mode
involves mainly out of plane bending of the left-hand leg. The first mode at 20.85Hz and the third
at 62.90Hz are present as clear sharp peaks on the receptance hyyðoÞ: The second mode is very
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Fig. 2. Original translational receptances.
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Fig. 3. Original rotational receptances.

Table 1

Original natural frequencies

Mode Natural frequencies,Hz

1 20.85

2 26.85

3 62.90
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clear in hzzðoÞ and the first mode appears clearly in the receptance hyzyz
ðoÞ determined from T-

block measurements [14].
When the right-hand leg was added the receptances (moduli) shown in Fig. 5 were obtained at

the connection point. The newly created natural frequencies, read from Fig. 5 and set as targets
for the inverse problem, are listed in Table 2 and the mode shapes are shown in Fig. 6. The first
mode shape is the in-plane bending mode of the two legs and the second mode is the out-of-plane
twisting mode about x with significant out-of-plane bending of the two legs. The first mode at
44.25Hz is very clear in the plot of h̄yyðoÞ and the second mode is prominent in h̄zzðoÞ: It is
important to appreciate that the modification achieved by the added leg is very considerable; the
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Fig. 4. Mode shapes of the original structure.
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Fig. 5. Receptances of the modified structure.
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Table 2

Modified natural frequencies

Mode Natural frequencies,Hz

1 44.25

2 89.57

y

x

z

x

y

Mode 1 Mode 2

Fig. 6. Mode shapes of the modified structure.
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modified natural frequencies are far away from the original natural frequencies and the mode
shapes are also very different.
5. Assignment of a single natural frequency

The natural frequency assigned in this section is the modified natural frequency of 44.25Hz.
Substituting the original frequency response function values at this frequency, o ¼ 278 rad=s; into
Eq. (9) a polynomial f ðb; d; tÞ is obtained. This polynomial may be considered to be a
superposition of monomials mi ¼ bnbdnd tnt ; where nb; nd and nt are non-negative integer powers,
with complex coefficients determined by the complex values of the original frequency response
functions. If for each monomial a degree dmi

¼ nb þ nd þ nt is defined then the degree of the
multivariate polynomial is defined to be maxðdmi

Þ; i ¼ 1; 2; 3; . . . : The complexity of the
polynomial depends on the degree together with the number of monomials in the superposition.
In this case the degree of the polynomial is 10 and involves all the monomials with degree 10 and
less.

In order to assign a single natural frequency two of the cross-section dimensions should be fixed
and the third one determined by solving the resulting single-variable polynomial. The polynomial
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Table 3

Assigning a natural frequency at 44.25Hz

Parameters Fixed parameter values Solution

t ðb; dÞ=ð0:1; 0:05Þ 0:00406 þ 0:00627i
b ðt; dÞ=ð0:004; 0:05Þ 0:10194 þ 0:01321i
d ðt; bÞ=ð0:004; 0:1Þ 0:05037 þ 0:00205i
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that assigns a natural frequency at 44.25Hz and determines the thickness is obtained after
entering the values b ¼ 0:1m and d ¼ 0:05m with the result that

gðtÞ ¼ ð�0:136 � 1021 þ 0:705� 1019iÞt10 þ ð0:443 � 1020 � 0:229� 1019iÞt9

þ ð�0:140� 1019 þ 0:728� 1017iÞt8 þ ð�0:8272� 1018 þ 0:427 � 1017iÞt7

þ ð0:118 � 1018 � 0:614� 1016iÞt6 þ ð�0:687 � 1016 þ 0:3613� 1015iÞt5

þ ð0:193 � 1015 � 0:102� 1014iÞt4 þ ð�0:242 � 1013 þ 0:110� 1012iÞt3

þ ð0:712 � 1010 þ 0:542� 109iÞt2 þ ð0:162809� 106 þ 0:603� 104iÞt þ 1, ð12Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
: This polynomial is solved numerically in Maple and gives the following solution

set:

� 0:159þ 0:128� 10�4i; �0:114� 10�4 � 0:2780� 10�5i,

� 0:112� 10�4 þ 0:3643� 10�5i; 0:406� 10�2 þ 0:728� 10�3i,

0:302� 10�1 � 0:128� 10�1i; 0:339� 10�1 þ 0:130� 10�1i,

0:562� 10�1 � 0:997� 10�3i; 0:749� 10�1 � 0:237� 10�6i,

0:765� 10�1 þ 0:593� 10�4i; 0:208� 0:175� 10�4i. ð13Þ

The bold faced value in expression (13) is the actual value of the thickness. Its real value is
0.004m, exactly the value it should be. Its imaginary value reflects the damping of the structure
and since the model does not include damping, a damping modification term gets attributed to the
thickness, giving in this way the positive imaginary value necessary to assign the natural frequency
to the imaginary axis of the complex plane. Polynomials gðbÞ and gðdÞ with complex coefficients
are obtained by fixing ðt; dÞ and ðt; bÞ to ð0:004; 0:05Þ and ð0:003; 0:1Þ; respectively. As with the case
of gðtÞ these polynomials give a multitude of solutions amongst which lie the desired ones. Table 3,
lists the experimental values of t, b and d obtained by solving the inverse problem as described.
The real part of these values is very close to the actual of values of b, d and t. The imaginary part
amounts to the fact that damping in the physical structure is solely attributed to these parameters
in each case.
6. Assignment of two natural frequencies

In this section, the inverse problem of assigning the two modified natural frequencies at
44.25Hz (in-plane) and 89.57Hz (out of plane) is presented. In order to obtain the modification
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Table 4

Assigning natural frequencies at 44.25Hz and 89.57Hz

Parameters Fixed parameter value Solution

ðt; bÞ d=0.05 0:0046 þ 0:00128i; 0:0890� 0:0047i
ðt; dÞ b=0.1 0:0026 þ 0:00018i; 0:055� 0:00402i
ðb; dÞ t=0.004 0:0924 � 0:0008i; 0:0516 þ 0:0022i
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polynomial for the 89.57Hz natural frequency the method described in Sections 2 and 3 is
followed but with b and d interchanged, because of the out-of-plane bending, and using the xz-
plane receptances. Specifically, in Eq. (7) Izz changes to Iyy; given by Iyy ¼ ðdb3

� ðd � 2tÞðb �

2tÞ3Þ=12; and HðoÞ becomes

HðoÞ ¼

hxx hxz hxyy

hzx hzz hzyy

hyyx hyyz hyyyy

0
B@

1
CA. (14)

Substituting the frequency response function values at o ¼ 562:78 rad=s ð89:57HzÞ into the
determinant leads to a polynomial in b, d, t that should vanish simultaneously with the
corresponding polynomial for the 44.25Hz natural frequency. This amounts to the simultaneous
solution of two multivariate polynomials in three unknowns, b, d and t with complex coefficients.
To solve such a system one variable is fixed and a solution is sought for the other two. In what
follows, the solution for b and d is sought whilst fixing t ¼ 0:004: The results for the other cases
are listed in Table 4. The polynomial obtained from in-plane motion at 44.25Hz will be denoted
by g1 and the one obtained from out-of-plane motion at 89.57Hz by g2: The real, R; and
imaginary parts, I; of these polynomials are given by

Rðg1Þ ¼
85660693

9 b3
� 3847656680d6

þ 449558583b2d2
þ 68201010140d7

þ 80504103
13

b2
þ 167286692

5
bd2

þ 170868787
15

d3
þ 73852759

12
d2

þ 160511381
13

bd þ 447618433
3

d4
þ 440158

1197
þ 367599583bd3

� 6613039
69

d � 47800278630bd4
þ 461742503

2
db3

� 67084561440b2d3

þ 234085561
8

b2d þ 613809091200b3d4
� 22365631

233
b

þ 1023015152000b2d5
� 9820945459b3d3

� 28819622650b3d2

þ 477407070800bd6
� 28081613150b2d4

� 19812291590bd5
� 9535339844d5, ð15Þ

Iðg1Þ ¼ � 34958842
71

b3
þ 196157172d6

� 334920112
3

b2d2
� 3528177472d7

þ 15430360
31

b2
þ 19603741

53
bd2

þ 12478919
36

d3
þ 16185428

33
d2

þ 7905765
8

bd � 185908697
5

d4
� 273729223

2
bd3

þ 124929
4166

� 2418376
315

d

þ 2473360860bd4
� 107490970

9
db3

þ 3470837456b2d3
� 23393174

29
b2d
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� 31753597240b3d4
� 52922662060b2d5

þ 508057556b3d3

þ 1490897909b3d2
� 24697242290bd6

þ 1426709510b2d4

þ 1007590514bd5
þ 493421313d5

� 3287467
427

b, ð16Þ

Rðg2Þ ¼ � 19615250
3

b3
� 345334115

2
b2d2

� 48284201
24

b2
� 227446592

11
bd2

� 71035737
10

d3
� 4022483

2
d2�52300090

13
bd � 160264249

4
bd3

þ 8705494
191

d � 380199831
2

db3
þ 5006597269b2d3

� 141739039
7

b2d

þ 415127847b3d3
þ 11673119580b3d2

þ 6789894
149

b þ 1665147515b5

� 2882832273b7
� 899415

3889
þ 1319861976b4d2

þ 926033300b5d þ 8331669833b4d

� 25945490460b4d3
� 43242484090b5d2

� 20179825900b6d

þ 354803083
2

b6
� 287594507

5
b4, ð17Þ

Iðg2Þ ¼ � 19685524
67 b3

� 240090041
37 b2d2

� 8378014
87 b2

� 3645981
4 bd2

� 99590617
321 d3

� 22730003
236

d2
� 14060720

73
bd � 55996791

32
bd3

þ 40922
23

d � 20700365
3

db3

þ 437329883
2

b2d3
� 22517024

25
b2d þ 271962877

15
b3d3

þ 509903618b3d2
þ 686639

386
b

þ 145502443
2

b5
� 251817479

2
b7

� 82676
10451

þ 211604329
4

b4d2

þ 37281928b5d þ 363989898b4d � 1133178654b4d3

� 1888631090b5d2
� 881361175b6d þ 86651095

12
b6

� 15131929
7

b4. ð18Þ

In an earlier study [19] using simulated data natural frequencies and zeros were assigned by
solving similar multivariate polynomials exactly by the theory of Groebner bases. A
brief discussion of Grobner bases is given in Ref. [19] and further details can be found in
the references therein. It was found that when using experimental data, as in the present study,
exact solutions are not attainable and the solution of the system presented by Eqs. (15)–(18)
could only be approximated through a numerical algorithm. A set of solutions were obtained
by the Maple command solve and are shown in the third row of Table 4. The real part of b is
0.0924m whereas the actual value is 0.1m. The real part of d is 0.0516m and the actual value is
0.05m. The other two rows list the results obtained when determining t and b together and t and d
together.

The out-of-plane mode of the modified structure shown in Fig. 6 clearly involves twisting of the
vertical legs as well as out-of-plane bending. There is in fact another out-of-plane mode at a lower
frequency where the two legs bend together in-phase without twisting. However this mode is
poorly excited by a force at one corner of the portal frame. The twisting mode at 89.57Hz on the
other hand is very well excited by the force at the connection point. It should be noted that the
receptances involving the rotation yx were not included in the analysis, and despite this omission
excellent estimates of the unknown variables b, d and t were achieved. To include all the
receptances that should strictly be present would require the measurement of hyxyx

which can only
be achieved by using a T2-block [14].
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7. Assignment of an antiresonance

This section presents the results for assigning an antiresonance of hyy at 89.7Hz, shown in Fig. 7
and a natural frequency at 44.25Hz . Results obtained for assignment of the antiresonance alone
and together with the natural frequency are given.

Following the procedure set out in Section 5 the values of the original frequency response
functions at 89.7Hz are substituted in Eq. (11) to give a multivariate polynomial in the cross-
section characteristics b, d and t. Since only one antiresonance is to be assigned two of the
parameters b, d and t can be fixed and the third one estimated. The results obtained are
summarised in Table 5.

A similar procedure to that described in Section 6 is adopted to simultaneously assign a natural
frequency at 44.25Hz and antiresonance 89.7Hz. Two multivariate polynomials in b, d and t, one
for the assignment of the natural frequency and the other for the assignment of the antiresonance
are obtained. By fixing one of the three parameters b, d and t the other two are determined by
solving the resulting polynomial system. These results are shown in Table 6. The numerical
solution for t and d with b fixed failed to converge.
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Fig. 7. Modified receptance hyy close to the antiresonance at 89.7Hz.

Table 5

Assigning an antiresonance frequency at 89.97Hz

Parameters Fixed parameter values Solution

t b=0.1, d=0.05 0.0039�0:0018i
d b=0.1, t=0.004 0.0511�0:6636i
b d=0.05, t=0.004 0.101�0:0636i
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Table 6

Assigning a natural frequency at 44.25Hz and an antiresonance at 89.97Hz

Parameters Fixed parameter value Solution

ðt; bÞ d=0.05 0:0046 þ 0:00128i; 0:0890� 0:0047i
ðt; dÞ b=0.1 Failed to converge

ðb; dÞ t=0.004 0:0924 � 0:0008i; 0:0516 þ 0:0022i

A. Kyprianou et al. / Journal of Sound and Vibration 284 (2005) 267–281280
8. Conclusions

In this article the inverse problem of assigning natural frequencies and antiresonances by a
beam modification has been presented and experimentally implemented. The modification theory
for linear systems has been presented from which a system of multivariate polynomials in the
parameters of the beam cross-section has been developed. The solution of this polynomial gave
the beam cross-section dimensions that assigned the desired natural frequencies and
antiresonances.

Assigning natural frequencies is a narrow band solution to the problem of avoiding resonant
excitation in structures. The methodology works well even for very significant modifications when
the modified natural frequencies are far away from the natural frequencies of the original system
and the mode shapes are very different. It gives good practical solutions when the natural
frequencies and antiresonances are sensitive to the modifications. One would expect to experience
difficulties of convergence or sensitivity to measurement noise when the derived natural
frequencies and antiresonances are insensitive to a chosen parameter, such as when a modification
is located close to a vibration node. This brings out issues of modification robustness. A future
research suggestion is to study the measures, used in linear control theory, as given by H2 and H1

in order to design a robust modification.
A different approach would be to seek non-linear modifications that absorb energy from a

linear structure at the frequency band where a lower level of response is required. Such studies on
the theoretical level are available in the vibration engineering literature, see for example Refs.
[20,21]. However, an experimental measure has not yet been developed that first quantifies the
non-linear behaviour and second uses this information in the same way the frequency response
function in this study is used to design a modification.
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